Mengi

Úr Wikibókunum, frjálsa kennslubókasafninu
Jump to navigation Jump to search

Höfundur: Hulda Hvönn Kristinsdóttir

Mengi (e. set) eru stærðfræðileg fyrirbæri sem heyra undir mengjafræði (e. set theory). Mengi eru, samkvæmt skilgreiningu, vel skilgreint samansafn aðgreinanlegra hluta. Með aðgreinanlegra er meint að engir tveir hlutir í gefnu mengi eru eins, mengi leyfa, með öðrum orðum, ekki endurtekningar. Mengi eru jafn mismunandi og þau eru mörg. Mengið ℝ er mengi allra rauntalna, mengið spendýr er mengi allra dýra sem fæða afkvæmi sín mjólk úr spena, mengið Alþingi er mengi allra þeirra sem sinna starfi þingmanns á Íslandi. Því eru engar skorður settar hversu stór mengi eru eða af hverju þau standa.

Mengi af fánum ríkja ESB

Framsetning[breyta]

Mengi eru oftast táknuð með slaufusvigum, það er og stök aðgreind með kommum. Þá er mengið A sem samanstendur af tölunum 1 og 2 sett fram sem . Tölurnar og eru kölluð stök mengisins og sagt er að mengið hafi fjöldatölu 2 þar sem það inniheldur 2 stök. Almennt gildir að fjöldatala segir til um fjölda staka í mengi. Innihaldi mengi óendanlega mörg stök hefur það fjöldatöluna Önnur framsetning á mengjum er með því að nota svokallaðar Venn myndir. Venn myndir eru myndræn framsetning á mengjum og eru nefndar eftir enska stærðfræðingnum John Venn. Mengi á Venn myndum eru almennt set fram með hringjum og stök þeirra rituð innan þeirra.

Venn mynd þar sem A er hlut mengi í B og C

Hlutmengi[breyta]

Hlutmengi er hluti af stökum annars mengis. Hlutmengi er mengi í eigin rétti og fylgir sömu lögum og lofum og mengi almennt gera. Ef við lítum til að mynda á mengið þá er það hlutmengi í menginu en mengið er hlutmengi í B.Þá er ritað að . Sérhvert mengi er hlutmengi í sjálfu sér og er þá kallað eiginlegt hlutmengi og tómamengið , sem inniheldur engin stök, er hlutmengi í sérhverju mengi. Stundum er sagt að mengi umlykji mengi ef er hlutmengi í eða að sé innihaldið í . Hafa skal hugfast að stakið 1 og mengið eru ekki sami hluturinn. Stakið 1 er tala en mengi eru ekki tölur, þó svo þau geti innihaldið tölur.

Sammengi og sniðmengi[breyta]

Sammengi er mengi sem inniheldur öll stök tveggja eða fleiri mengja. Ef gefin eru mengin og þá er sammengi þeirra mengið . Þá er skrifað að . Sniðmengi, á hinn veginn, er mengi sem inniheldur þau stök sem eru sameiginleg tveimur eða fleiri mengjum. Því er sniðmengi mengjanna og mengið þar sem er eina stakið sem er bæði í og . Þá er ritað að . Á vennmyndum eru sammengi sameining þeirra hringja sem vísa til tilsvarandi mengja sammengisins en sniðmengi á vennmyndum svæðið sem verður til þegar hringirnir skarast. Á myndinni hér að ofan er sammengið allur litaði flöturinn en sniðmengið er blágræna svæðið. Þar er mengið hlutmengi í sniðmenginu, þ.e. .

Fyllimengi og mengjamismunur[breyta]

Fyllimengi mengis eru öll stök utan mengisins. Almennt, þegar talað er um fyllimengi, er svokallað almengi tiltekið. Almengi eru allar þær tölur sem við tökum til greina í útreikningunum hvert sinn og er oft táknað með . Á vennmyndum eru þau gjarnar táknuð með rétthyrningum í stað hringja. Ef og . Fyllimengi í eru því öll stök sem ekki eru í , þau eru . Þá er ritað að . Ef og þá er mengjamismunur við mengið , táknað með , þ.e. öll stök sem ekki eru í .

Spurningar[breyta]

  1. Nefndu nokkur dæmi um mengi sem við notum dagsdaglega.
  2. Hvað eru Venn myndir? Útskýrðu hvenær þú heldur að þær geti komið að gagni.
  3. Búðu til mengin A, B og C sem innihalda einhverjar heiltölur á bilinu 1-20. Finndu , og . Er eitthvert mengjanna hlutmengi í öðru?
  4. Hver heldurðu að fjöldatala mengis allra náttúrulegra talna sé?

Krossapróf[breyta]

1 Gefin eru mengin og . Hvað er .

2 Í Staðarholtsskóla eru tvær nefndir, skemmtinefnd og ferðanefnd. Látum mengi þeirra sem eru í skemmtinefndinni vera táknað með S og ferðanefndinni F. Þá er og . Finndu mengi allra þeirra sem eru í ferðanefndinni en ekki í skemmtinefndinni og tjáðu með stærðfræðilegum táknum.

3 Hver er fjöldatala mengisins ?

34
8
99
9

4 Hvert af eftirtöldu er ekki mengi

Sjávardýr
Nemendur í Háteigsskóla
Harry Potter bækurnar
Þetta eru allt mengi.

5 Gefið er mengið og . Merktu við rétta fullyrðingu.


Heimildir[breyta]


Tengt efni[breyta]

Gagnlegir tenglar og myndbönd[breyta]